

EIC Forward GEM Tracking using PHGenFit and PHG4Hit

Jin Huang(BNL),

Haiwang Yu (NMSU)

Jul 06, 2016

Outline

Motivation: Produce fsPHENIX tracking performance with Geant simulation + Kalman Filter.

- More realistic than Sagitta calculation.
- Serves as prototype for forward sPHENIX tracking software

Procedure:

- Simulate single muons using PHG4SimpleEventGenerator. ⇒ PHG4Hit
- Smear PHG4Hit from muon track according to given detector resolution.
- Use that smeared PHG4Hit and GenFit Kalman Filter do the fitting.

Contents:

- Method Verification: test with 3-layer vacuum detector.
- Test using EIC concept FGEM, arXiv:1402.1209
- Companion with previous studies.

Method Verification: Using 3-layer vertical plane tracking

3-layer vertical plane testing setup

First, we tested the code using 3-layer vertical planes:

- The world and all detector material is G4_Galactic.
- 3-layer vertical planes with black holes outside.
- $\delta r = 1 cm$
- $r\delta\phi = 100 \,\mu\text{m}$

Vacuum, 3-layer, η = 3.0, $r\delta\phi$ = 100 μ m, δr = 1cm

PHGenFit results are very similar with the Geant4 Sagitta calculation:

- Blue circle: $\sigma_{\text{Sagitta}}/\text{Sagitta}$ vs. p from Geant4 simulation
- Black dot: $\sigma_{\rm p}/{\rm p}$ vs. p from PHGenFit Kalman fitting.

PHGenFit: σ_p/p

EIC Concept FGEM tracker: Momentum resolution σ_p/p

5(4)-station Forward GEM Detector

- Detector setup using G4_FGEM_fsPHENIX.C in sPHENIX master branch.
- z = 17 cm $(1.01 < \eta < 2.7)$, 62 cm $(2.15 < \eta < 4.0)$, 120, 160, 275 $(1.45 < \eta < 4)$ cm
- $\delta r = 1$ cm, $r\delta \phi = 100 \ \mu m \ (\eta = 1.5^2.5) 50 \ \mu m \ (\eta = 2.5^4)$
- sPHENIX field, no passive piston.
- Tracking used vertex from smeared truth vertex (0,0,0) and 50 μ m resolution.

how to calculate $\sigma_{\rm p}/{\rm p}$

- 2D histo: $(p_{Reco} p_{True})/p_{True}$ vs p_{True} , (right plot)
- For each slice of p_{True} , fit with Gaussian, extract mean as offset (Grey dots), sigma as momentum resolution (σ_p : Black dots), left plot.
- We also calculated $<\sigma_{Sagitta}$ /Sagitta> as a reference (Blue circles): Sagitta is calculated using vertex, station at 120cm and station at 275 cm.

Result: σ_p /p for different pseudo-rapidity

Details for each curve are in the backups.

PDF format: https://www.phenix.bnl.gov/WWW/p/draft/yuhw/fsPHENIX/FGEM_PHGenFit.pdf

Compare with previous studies

Compare with previous studies, Jin's MatLab calculation

Jin's calculation based on vertex + optimum Sagitta plane + 300cm last station.

GenFit fitting for η = 3.0, corresponding to magenta curve in left plot.

- The linear term, p1, from the σ_S /S is consistent with left plot, both are ~0.25%.
- The p1 term from full GenFit Kalman is better than $\sigma_{\rm S}/{\rm S}$. That could be caused by that we have more stations in full Kalman.

Compare with BeAST:

- Resolution is about x2 of the BeAST, despite BeAST use x2 stronger magnetic field + silicon tracker, as we used a much longer tracking arm.
- Our higher momentum resolution could be improved by also switching GEM to high precision silicon tracker.

BeAST

Compare with previous studies, arXiv:1402.1209

- Linear term p1 is better than previous Sagitta tracking study by using a vertex in the fitting.
- Constant term p0, (Multiple Scattering Effect) is constant with previous Sagitta tracking study.

0.12

 η =1.5: 0.8% \oplus 0.08% p η =2.0: 1.3% \oplus 0.14% p

Summary

- Tracking prototype made based on PHGenFit and PHG4Hit.
 - https://github.com/HaiwangYu/FGEM_PHGenFit_G4Hit_Tracking
- Produced performance plots for the EIC concept forward tracking detector.
 - Results consistent with previous studies.

Backups:

$\eta = 1.5$, $r\delta\phi = 100 \ \mu m$

η = 2.0, $r\delta\phi$ = 100 μ m

$\eta = 2.5$, $r\delta \phi = 100 \ \mu m$

η = 3.0, $r\delta\phi$ = 50 μ m

